p-group, metabelian, nilpotent (class 3), monomial
Aliases: C23⋊2Q16, C24.81D4, C4⋊C4.78D4, (C2×C8).40D4, (C2×Q8).77D4, C4.62C22≀C2, (C22×Q16)⋊1C2, C4.15(C4⋊D4), C4.28(C4⋊1D4), C23.898(C2×D4), (C22×C4).139D4, C22.52(C2×Q16), C22.4Q16⋊37C2, C2.12(C8.D4), C2.6(C23⋊2D4), C22.194C22≀C2, C2.28(D4.7D4), C2.12(C8.18D4), C22.102(C4○D8), (C22×C8).106C22, (C23×C4).269C22, C2.18(C22⋊Q16), (C22×Q8).47C22, C22.219(C4⋊D4), (C22×C4).1432C23, C22.117(C8.C22), (C2×Q8⋊C4)⋊12C2, (C2×C4).1022(C2×D4), (C2×C22⋊C8).26C2, (C2×C22⋊Q8).12C2, (C2×C4).615(C4○D4), (C2×C4⋊C4).103C22, SmallGroup(128,733)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C23⋊2Q16
G = < a,b,c,d,e | a2=b2=c2=d8=1, e2=d4, ab=ba, eae-1=ac=ca, dad-1=abc, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede-1=d-1 >
Subgroups: 400 in 196 conjugacy classes, 56 normal (22 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, Q8, C23, C23, C23, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, Q16, C22×C4, C22×C4, C2×Q8, C2×Q8, C24, C22⋊C8, Q8⋊C4, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C22⋊Q8, C22×C8, C2×Q16, C23×C4, C22×Q8, C22.4Q16, C2×C22⋊C8, C2×Q8⋊C4, C2×C22⋊Q8, C22×Q16, C23⋊2Q16
Quotients: C1, C2, C22, D4, C23, Q16, C2×D4, C4○D4, C22≀C2, C4⋊D4, C4⋊1D4, C2×Q16, C4○D8, C8.C22, C23⋊2D4, C22⋊Q16, D4.7D4, C8.18D4, C8.D4, C23⋊2Q16
(1 5)(2 57)(3 7)(4 59)(6 61)(8 63)(9 13)(10 18)(11 15)(12 20)(14 22)(16 24)(17 21)(19 23)(25 46)(26 34)(27 48)(28 36)(29 42)(30 38)(31 44)(32 40)(33 49)(35 51)(37 53)(39 55)(41 52)(43 54)(45 56)(47 50)(58 62)(60 64)
(1 15)(2 16)(3 9)(4 10)(5 11)(6 12)(7 13)(8 14)(17 58)(18 59)(19 60)(20 61)(21 62)(22 63)(23 64)(24 57)(25 42)(26 43)(27 44)(28 45)(29 46)(30 47)(31 48)(32 41)(33 53)(34 54)(35 55)(36 56)(37 49)(38 50)(39 51)(40 52)
(1 19)(2 20)(3 21)(4 22)(5 23)(6 24)(7 17)(8 18)(9 62)(10 63)(11 64)(12 57)(13 58)(14 59)(15 60)(16 61)(25 37)(26 38)(27 39)(28 40)(29 33)(30 34)(31 35)(32 36)(41 56)(42 49)(43 50)(44 51)(45 52)(46 53)(47 54)(48 55)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 32 5 28)(2 31 6 27)(3 30 7 26)(4 29 8 25)(9 47 13 43)(10 46 14 42)(11 45 15 41)(12 44 16 48)(17 38 21 34)(18 37 22 33)(19 36 23 40)(20 35 24 39)(49 63 53 59)(50 62 54 58)(51 61 55 57)(52 60 56 64)
G:=sub<Sym(64)| (1,5)(2,57)(3,7)(4,59)(6,61)(8,63)(9,13)(10,18)(11,15)(12,20)(14,22)(16,24)(17,21)(19,23)(25,46)(26,34)(27,48)(28,36)(29,42)(30,38)(31,44)(32,40)(33,49)(35,51)(37,53)(39,55)(41,52)(43,54)(45,56)(47,50)(58,62)(60,64), (1,15)(2,16)(3,9)(4,10)(5,11)(6,12)(7,13)(8,14)(17,58)(18,59)(19,60)(20,61)(21,62)(22,63)(23,64)(24,57)(25,42)(26,43)(27,44)(28,45)(29,46)(30,47)(31,48)(32,41)(33,53)(34,54)(35,55)(36,56)(37,49)(38,50)(39,51)(40,52), (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,17)(8,18)(9,62)(10,63)(11,64)(12,57)(13,58)(14,59)(15,60)(16,61)(25,37)(26,38)(27,39)(28,40)(29,33)(30,34)(31,35)(32,36)(41,56)(42,49)(43,50)(44,51)(45,52)(46,53)(47,54)(48,55), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,32,5,28)(2,31,6,27)(3,30,7,26)(4,29,8,25)(9,47,13,43)(10,46,14,42)(11,45,15,41)(12,44,16,48)(17,38,21,34)(18,37,22,33)(19,36,23,40)(20,35,24,39)(49,63,53,59)(50,62,54,58)(51,61,55,57)(52,60,56,64)>;
G:=Group( (1,5)(2,57)(3,7)(4,59)(6,61)(8,63)(9,13)(10,18)(11,15)(12,20)(14,22)(16,24)(17,21)(19,23)(25,46)(26,34)(27,48)(28,36)(29,42)(30,38)(31,44)(32,40)(33,49)(35,51)(37,53)(39,55)(41,52)(43,54)(45,56)(47,50)(58,62)(60,64), (1,15)(2,16)(3,9)(4,10)(5,11)(6,12)(7,13)(8,14)(17,58)(18,59)(19,60)(20,61)(21,62)(22,63)(23,64)(24,57)(25,42)(26,43)(27,44)(28,45)(29,46)(30,47)(31,48)(32,41)(33,53)(34,54)(35,55)(36,56)(37,49)(38,50)(39,51)(40,52), (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,17)(8,18)(9,62)(10,63)(11,64)(12,57)(13,58)(14,59)(15,60)(16,61)(25,37)(26,38)(27,39)(28,40)(29,33)(30,34)(31,35)(32,36)(41,56)(42,49)(43,50)(44,51)(45,52)(46,53)(47,54)(48,55), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,32,5,28)(2,31,6,27)(3,30,7,26)(4,29,8,25)(9,47,13,43)(10,46,14,42)(11,45,15,41)(12,44,16,48)(17,38,21,34)(18,37,22,33)(19,36,23,40)(20,35,24,39)(49,63,53,59)(50,62,54,58)(51,61,55,57)(52,60,56,64) );
G=PermutationGroup([[(1,5),(2,57),(3,7),(4,59),(6,61),(8,63),(9,13),(10,18),(11,15),(12,20),(14,22),(16,24),(17,21),(19,23),(25,46),(26,34),(27,48),(28,36),(29,42),(30,38),(31,44),(32,40),(33,49),(35,51),(37,53),(39,55),(41,52),(43,54),(45,56),(47,50),(58,62),(60,64)], [(1,15),(2,16),(3,9),(4,10),(5,11),(6,12),(7,13),(8,14),(17,58),(18,59),(19,60),(20,61),(21,62),(22,63),(23,64),(24,57),(25,42),(26,43),(27,44),(28,45),(29,46),(30,47),(31,48),(32,41),(33,53),(34,54),(35,55),(36,56),(37,49),(38,50),(39,51),(40,52)], [(1,19),(2,20),(3,21),(4,22),(5,23),(6,24),(7,17),(8,18),(9,62),(10,63),(11,64),(12,57),(13,58),(14,59),(15,60),(16,61),(25,37),(26,38),(27,39),(28,40),(29,33),(30,34),(31,35),(32,36),(41,56),(42,49),(43,50),(44,51),(45,52),(46,53),(47,54),(48,55)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,32,5,28),(2,31,6,27),(3,30,7,26),(4,29,8,25),(9,47,13,43),(10,46,14,42),(11,45,15,41),(12,44,16,48),(17,38,21,34),(18,37,22,33),(19,36,23,40),(20,35,24,39),(49,63,53,59),(50,62,54,58),(51,61,55,57),(52,60,56,64)]])
32 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 4A | 4B | 4C | 4D | 4E | 4F | 4G | ··· | 4N | 8A | ··· | 8H |
order | 1 | 2 | ··· | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
size | 1 | 1 | ··· | 1 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | 4 | 8 | ··· | 8 | 4 | ··· | 4 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | - | - | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | D4 | D4 | D4 | C4○D4 | Q16 | C4○D8 | C8.C22 |
kernel | C23⋊2Q16 | C22.4Q16 | C2×C22⋊C8 | C2×Q8⋊C4 | C2×C22⋊Q8 | C22×Q16 | C4⋊C4 | C2×C8 | C22×C4 | C2×Q8 | C24 | C2×C4 | C23 | C22 | C22 |
# reps | 1 | 1 | 1 | 2 | 2 | 1 | 4 | 2 | 1 | 4 | 1 | 2 | 4 | 4 | 2 |
Matrix representation of C23⋊2Q16 ►in GL6(𝔽17)
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 8 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 14 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
14 | 3 | 0 | 0 | 0 | 0 |
14 | 14 | 0 | 0 | 0 | 0 |
0 | 0 | 9 | 2 | 0 | 0 |
0 | 0 | 11 | 8 | 0 | 0 |
0 | 0 | 0 | 0 | 8 | 0 |
0 | 0 | 0 | 0 | 15 | 15 |
7 | 16 | 0 | 0 | 0 | 0 |
16 | 10 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 15 |
0 | 0 | 0 | 0 | 5 | 14 |
G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,8,0,0,0,0,0,16,0,0,0,0,0,0,16,14,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[14,14,0,0,0,0,3,14,0,0,0,0,0,0,9,11,0,0,0,0,2,8,0,0,0,0,0,0,8,15,0,0,0,0,0,15],[7,16,0,0,0,0,16,10,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,3,5,0,0,0,0,15,14] >;
C23⋊2Q16 in GAP, Magma, Sage, TeX
C_2^3\rtimes_2Q_{16}
% in TeX
G:=Group("C2^3:2Q16");
// GroupNames label
G:=SmallGroup(128,733);
// by ID
G=gap.SmallGroup(128,733);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,2,-2,448,141,456,422,387,2019,1018,248]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^8=1,e^2=d^4,a*b=b*a,e*a*e^-1=a*c=c*a,d*a*d^-1=a*b*c,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations